2 research outputs found

    The probabilistic neural network architecture for high speed classification of remotely sensed imagery

    Get PDF
    In this paper we discuss a neural network architecture (the Probabilistic Neural Net or the PNN) that, to the best of our knowledge, has not previously been applied to remotely sensed data. The PNN is a supervised non-parametric classification algorithm as opposed to the Gaussian maximum likelihood classifier (GMLC). The PNN works by fitting a Gaussian kernel to each training point. The width of the Gaussian is controlled by a tuning parameter called the window width. If very small widths are used, the method is equivalent to the nearest neighbor method. For large windows, the PNN behaves like the GMLC. The basic implementation of the PNN requires no training time at all. In this respect it is far better than the commonly used backpropagation neural network which can be shown to take O(N6) time for training where N is the dimensionality of the input vector. In addition the PNN can be implemented in a feed forward mode in hardware. The disadvantage of the PNN is that it requires all the training data to be stored. Some solutions to this problem are discussed in the paper. Finally, we discuss the accuracy of the PNN with respect to the GMLC and the backpropagation neural network (BPNN). The PNN is shown to be better than GMLC and not as good as the BPNN with regards to classification accuracy

    Design of neural networks for classification of remotely sensed imagery

    Get PDF
    Classification accuracies of a backpropagation neural network are discussed and compared with a maximum likelihood classifier (MLC) with multivariate normal class models. We have found that, because of its nonparametric nature, the neural network outperforms the MLC in this area. In addition, we discuss techniques for constructing optimal neural nets on parallel hardware like the MasPar MP-1 currently at GSFC. Other important discussions are centered around training and classification times of the two methods, and sensitivity to the training data. Finally, we discuss future work in the area of classification and neural nets
    corecore